Plug-in Documentation.

Functions.

StartPlugin : fill your display-lists,define textures and prepare your program for functioning.

	if everything went ok return TRUE else FALSE.

	A pointer to a structure called WhereIs3DTop is given to you. This structure contains

	valuable information for you about 3DTop and yourself. MyhInst and Unique should be

	copied and saved because they are unique to you.

struct _WhereIs3DTop {

HINSTANCE hInst;			// instance handle of 3DTop

HWND hWnd;				// window-handle of 3DTop

HINSTANCE MyhInst;			// instance handle of you

HDC hDC;				// hdc of 3DTop

int Unique;				// unqiue number for multiple starts of plug-in

HFONT hFont;				// Main font of 3DTop

BOOL TNT;				// TRUE if TNT-chip in computer

Icon3D * Object;				// Pointer to your own Object-memory.

					// Saved to and loaded for you from icon3d.dat.Only

					// when "reload on startup" is on ofcourse.

GLdouble * Viewer; 		// Viewpoint, 9 doubles: eye-x, eye-y, eye-z,

					// reserved1, reserved2, reserved3,

					// upvector-x, upvector-y, upvector-z.

					// same parameters as in gluLookat

					// do NOT change the reserved parameters.

struct _LookAngle * LookAngle;		// another way of defining the center-point:

					// Lookangle.x= angle in radians around the y-axis (look 					// around you)

					// Lookangle.y= angle in radians around the x-axis (look 					// up and down)

//future version of this structure will possibly contain even more information here

//but should be backwards compatible

};

Each StartPlugin will receive a Unique number in WhereIs3DTop that will let you differentiate

between different start-ups of the plug-in. This Unique number is sent to every function.

StopPlugin : use Unique to delete all lists,textures belonging to you.

TimerDraw : draw your lists, timer runs at 25 Hz.

PhantomDraw : draw your phantom-lists for selection-purposes.

Part of the code for mouse-interaction .

ReceiveMessage : message from 3DTop, like WM_LBUTTONDOWN etc.

		if you don't use the message return FALSE so 3dtop continues to process it.

		if you use the message return TRUE, so 3dtop doesn't process it.

Part of the code for mouse-interaction . Works as follows: when the user clicks with a mouse-button on your plug-in you will receive the mouse-message in ReceiveMessage, when you want to capture all future mouse-messages you return TRUE. Then ALL mouse-messages (between and including WM_MOUSEFIRST and WM_MOUSELAST) will be sent to you. When you're done with mouse-interaction return FALSE.

To determine what part of your plug-in is selected 3DTop does the following (like in the alarm-

time-setter): before it sends a ReceiveMessage it will ask you to draw a phantom plug-in (not seen on the screen) with all things that you want to be selectable in different colors you can choose yourself. 3DTop will send you the color of the pixel that the mouse selected in the structure PluginMessage. With the color you can determine which part of your plug-in was selected. Keep in mind that when you use a 16-bit color-display the colors you receive do not have to be exactly the same as the colors you've put in the display-list. This will probably be true for true-color displays also because of small round-off errors. So if your plug-in should work on all computers keep an error-margin, corresponding with 16-bit color display. 3DTop will disable GL_LIGHTING and GL_DITHER to make sure that you receive the correct colors.

If you make some GL_SMOOTH planes you can even determine where in that plane the user clicked.

struct _PluginMessage {

unsigned int Plugin;			//internal 3DTop-number

int Unique;				// your Unique

unsigned int Message;			// message, copy of WM_xxx

WPARAM wParam;			// as normal, belonging to WM_xxx

LPARAM lParam;			// as normal, belonging to WM_xxx

GLubyte Red;				// Red color-value, unsigned byte

GLubyte Green;				// Green color-value, unsigned byte

GLubyte Blue;				// Blue color-value, unsigned byte

GLubyte Alpha;				// Alpha color-value, unsigned byte.

//future version of this structure will possibly contain even more information here

//but should be backwards compatible

};

To start a plug-in from another application:

#define WM_EXT_START_PLUGIN WM_USER+0x3d

#define WM_EXT_STOP_PLUGIN WM_USER+0x3d+1

To start a plugin use the following code-example in your application:

HWND FoundWindow = NULL;

{

	EnumWindows(EnumProc,NULL);		//check all windows

	if (FoundWindow)

		{OpenClipboard(NULL);

		textp=(char *) GlobalAlloc(GMEM_FIXED,MAX_PATH);

		lstrcpy(textp,"full path and name of your dll");

		SetClipboardData(CF_TEXT,textp);

		CloseClipboard();

		SendMessage(FoundWindow,WM_EXT_START_PLUGIN,NULL,NULL);

// wait until message is processed by 3dtop

//use SendMessageTimeOut if you want

		GlobalFree(textp);

		}

}

BOOL CALLBACK EnumProc(HWND hWnd,LPARAM lParam)

{

	int tl;

	char text[256];

	tl=GetWindowText(hWnd,text,256);

	if (lstrcmpi("3dtop",text)==0)

		{FoundWindow=hWnd;

		return (FALSE);				// Stop checking

		}

	return (TRUE); 			// Continue checking

}

To stop a plug-in do the same but send message

		SendMessage(FoundWindow,WM_EXT_STOP_PLUGIN,NULL,NULL);

Then all plug-ins with the name you specified in the clipboard will be deleted. This means

that multiple start-ups of the plug-in will all disappear.

If your application knows the Unique number of the plug-in it wants to delete, you

can also simply send the following message without the need to fill the clipboard:

		SendMessage(FoundWindow,WM_EXT_STOP_PLUGIN,MyUnique,NULL);

Default OpenGL State

3DTop uses the following default OpenGL-states, so make sure any state-changes you do will

be set back to it's default state:

	 glEnable(GL_LIGHTING);

	 glColorMask(GL_TRUE,GL_TRUE,GL_TRUE,GL_TRUE);

	 glDisable(GL_ALPHA_TEST);

	 glAlphaFunc(GL_GREATER,0.5);

	 glDisable(GL_AUTO_NORMAL);

	 glBlendFunc(GL_ONE,GL_ONE);

	 glDisable(GL_BLEND);

	 glDisable(GL_FOG);

	 glDisable(GL_NORMALIZE);

	 glHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_FASTEST);

	 glEnable(GL_DITHER);

	 glEnable(GL_COLOR_MATERIAL);

	 glShadeModel(GL_FLAT);

	 glEnable(GL_DEPTH_TEST);

	 glEnable(GL_TEXTURE_2D);

	 glEnable(GL_CULL_FACE);

	 glFrontFace(GL_CCW);

	 glCullFace(GL_BACK);

	 glListBase(0);

	 GLfloat matDiff[4] = { 0.7F, 0.7F, 0.7F, 0.7F };

	 GLfloat matSpec[4] = { 0.3F, 0.3F, 0.3F, 1.00F };

	 GLfloat matEmis[4] = { 0.0F, 0.0F, 0.0F, 1.00F };

	 GLfloat matShine = 50.00F;

	 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, matDiff);

	 glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, matSpec);

	 glMaterialfv(GL_FRONT_AND_BACK, GL_EMISSION, matEmis);

	 glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, matShine);

	 glColorMaterial(GL_FRONT_AND_BACK,GL_AMBIENT_AND_DIFFUSE);

Object-Memory

Each object in 3DTop has its own place in memory where information about the object is stored. The following Icon3D-structure describes the layout:

struct Icon3D{

GLfloat reserved1;

GLfloat reserved2;

GLfloat x,y,z; 		// x, y and z position of your plug-in

GLfloat angle,ax,ay,az;		// Angle of rotation and x, y , z vectors of your plug-in

GLfloat	reserved3;

UCHAR reserved4[100];

UCHAR Scratch[90];		// Scratch-memory

};

Scratch-memory information can be for instance Icon-names, color-values, alarm-times etc.. This part of an object is also used for inter-object communication. See below.The scratch-memory consists of 90 bytes, not much, but enough for the time being. A pointer to the object will be send along with WhereIs3DTop which should be saved locally and can be relocated ! Therefore a message is send to ReceiveMessage called WM_RELOCATE which you will receive when the object-memory has been relocated, the new pointer will then be in PluginMessage->lParam. 3DTop will wait until you finished processing this message so the scratch-memory pointer will always be valid in other parts of your plug-in

The contents of object-memory will also be saved into Icon3d.dat and reloaded again when "Reload on startup" has been selected. So this could be a simple way to save preferences.

The Viewpoint

As from the version of 5 November 1999, 3DTop shares the viewpoint of the viewer with all plug-ins, so a plug-in can change it or use it to interact with the user. For this reason WhereIs3DTop contains two pointers to 3DTop's internal structures that define the viewers position called "Viewer" and "LookAngle". Both structures are filtered to give smoother movement with the relatively low frame-rate of 25 Hz that 3DTop uses.

Using the Color Chooser

Send a message to 3DTop:

PostMessage(WhereIs3DTop->hWnd,WM_COMMAND,PLUGIN_COLOR,MyUnique);

This message will create the color-cube for the user to edit a color for parts of your plug-in. Chosen color-values will be available in the scratch-memory at offset:

80 = Red, GLubyte

81 = Green, GLubyte

82 = Blue, GLubyte

When the user chose a new color-value PLUGIN_COLOR is send back to your ReceiveMessage (message=WM_COMMAND,wParam=PLUGIN_COLOR) by 3DTop. You don't have to capture this message when you use the scratch-memory directly like in the example.

Miscellaneous

For safety-reasons, the plug-ins are not loaded back out of icon3d.dat at start-up by default.

You can set it to load at start-up with the right mouse-button and select "Reload at start-up".

The template-code contains:

-Two push-buttons you can select, the blue one to simply push and the red one to quit.

-Example-code for text-box-making

A safety-flag for not starting the dll-twice. This does not mean that you can not build a plug-in

that can be started several times. But you'll have to write the code yourself.

-A color-chooser example when you select the "blue" push-button with the left mouse-button.

-At the end of TimerDraw an example of how to change the viewer-position.

